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Abstract: This paper describes how mutexes, semaphores and condition can be 

implemented in user space using pipes. The implementation is based on pipe's properties 

to block reading processes when trying to read from empty pipes and that a byte is red 

only once. The main asset of the implementation is its extreme simplicity. 
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1. INTRODUCTION 
 

The need for process synchronization is so obvious 

that we won't insist on its importance. In this paper, 

we describe an implementation in user space of 

"classical" synchronization mechanisms: mutexes, 

semaphores and condition variables. In this 

implementation, the only operating system 

mechanism used is pipe.  

 

Usually, synchronization is implemented in user 

space with busy waiting or using special hardware 

instructions such as TSL (Test and Set Lock). 

Disabling interrupts is out of the question, even in the 

case when this is possible outside the kernel, because 

an incorrect program will freeze the system. Busy 

waiting is not recommended because it wastes CPU 

time and it can lead to priority inversion. One of the 

best implementations using TSL is similar with that 

proposed the Tanenbaum(2001) for mutexes, 

synchronizing threads in user space: 

 
mutex_lock: 

 TSL REGISTER, MUTEX 

 CMP REGISTER, #0 

 JZE ok 

 CALL sched_yield 

 JMP mutex_lock 

ok: 

 RETI  

 

In this solution we have replaced thread_yield, a call 

to the thread scheduler implemented in user space, 

with a system call to scheduler, sched_yield, which 

makes the calling process to give up the CPU. 

 

The above solution is very efficient when the mutex 

is not taken because it doesn't need a system call. But 

in the opposite case, the processor is released and the 

process is put at the end of its corresponding ready 

list. If the process that owns the resource has a lower 

priority then we have priority inversion problem and 

only the scheduler can solve that. Even without 

priority inversion this implementation is inefficient. 

Consider the case when we have n processes waiting 

to lock the same mutex and the critical region of the 

process that has the mutex is q quantum "long", i.e. 

needs q quantum to execute. At the end of its 

quantum, the process that owns the mutex will give 

up the processor to the first waiting process, which is 

trying to lock the same mutex. The new running 

process, after executing a very short code, will decide 

to release CPU voluntarily to the next waiting 

process, which is not different at all from the 

previous one and so is the outcome. After the owning 

process releases the CPU we actually have a rapid 

succession of n context switches, until the running 

process will be again the one that is the only real 

ready process and this sequence of context switches 

will repeat unnecessarily until the owning process 

will exit the critical region.  

 

 



2. IMPLEMENTATION 
 

In our implementation will make use of pipe 

properties:  

 

1. If the pipe is empty, the process trying to 

read from will sleep until another process 

writes data into the pipe, at which time all 

sleeping processes that were waiting for 

data wake up and race to read the pipe, 

(Bach ,1986). 

2. Every byte from pipe will be read only 

once. 
 
 

2.1 How do we recognize a good solution? 
 

A solution to the critical-section problem must satisfy 

the following three requirements (Silberschatz et al., 

2002): 

 

1. Mutual Exclusion: When a process is 

executing in its critical section, then no 

other processes can be executing in their 

critical sections. 

2. Progress: If no process is executing in its 

critical section and some processes wish to 

enter in their critical sections, then only 

those processes that are not executing in 

their remainder section can participate in the 

decision on which will enter its critical 

section next, and this selection cannot be 

postponed indefinitely. 

3. Bounded Waiting: There exists a bound on 

the number of times that other processes are 

allowed to enter their critical sections after a 

process has made a request to enter its 

critical section and before that request is 

granted. 

 

Another requirement is not to make any assumption 

about the speed of CPUs.  
 
2.2 Non-recursive and non-error checking mutex 

implementation. 

 

We define mutexes as a structure containing both 

ends of a pipe: 

 
typedef struct { 

int pipes[2]; 

} Mutex; 

 

To create a mutex we use the following call: 
int createMutex(Mutex* mutex ) { 

int rez = pipe(mutex->pipes); 

if (rez == -1) { 

return -1; 

} 

write(mutex->pipes[1], "1", 

1); 

return 1; 

} 

 

Mutex consists in creating a pipe and writing a single 

byte in that. 

 

The beginning of critical section is marked with the 

take_mutex call: 
 

int take_mutex(Mutex mutex) { 

char b; 

int rez = 

read(mutex.pipes[0], &b, 1); 

return rez; 

} 

 

The algorithm is very simple: it tries to read a byte 

from the pipe. If the pipe is empty, the process 

issuing the call blocks until some other process 

writes into the pipe. Remember that a newly created 

mutex has a byte wrote in its pipe thus the mutex 

being not taken. When a process takes a free mutex it 

drains the pipe, blocking the following processes 

trying to obtain the mutex. 

 

When a process releases a mutex writes a single octet 

into mutex's pipe: 

 
int release_mutex(Mutex mutex) { 

int rez = 

write(mutex.pipes[1], "1", 

1); 

return rez;  

}  

 

If two processes are waiting to take the mutex they 

will be waked-up but only one will succeed to take 

the mutex because there is only one byte in the pipe. 

 

 

2.3 Error check mutex implementation. 

 

In this type of mutex, if the same process tries to lock 

a mutex which already owns an error is returned. In 

the later implementation the process deadlock itself. 

The modifications are minimal: 

 
#define EDEADLK -2 

typedef struct { 

int pipes[2]; 

int owner; 

} Mutex; 

 

Initially, nobody will own the mutex:  
int createMutex(Mutex* mutex ) { 

int rez = pipe(mutex->pipes); 

if (rez == -1) { 

return -1; 

} 

write(mutex->pipes[1], "1", 

1); 

mutex->owner = -1; 

return 1; 

} 



 

When trying to lock the mutex the process checks if 

it already owns the mutex: 

 
int take_mutex(Mutex* mutex) { 

char b; 

if (mutex->owner ==  

getpid()){ 

  

return EDEADLK; 

} 

int rez = read(mutex 

->pipes[0], &b, 1); 

if (rez != -1) { 

mutex->owner = getpid(); 

} 

return rez; 

} 

 

After successfully locks the mutex the process marks 

itself as the owner of the mutex. If a process inherits 

the mutex after it was locked by the parent, the mutex 

owner will be marked by the parent id. If the mutex 

is inherited before was locked the owner will be –1. 

The field is used for the process which wants to lock  

the mutex as an indicator for the case in which  the 

calling process is already the owner. It doesn't matter 

if the mutex is free or owned by another process. 

 

When it releases a mutex the process first checks to 

see if it is the owner. If true, writes the magic byte 

and marks for itself that the mutex its free:  

 
int release_mutex(Mutex* mutex) { 

if (mutex->owner !=  

getpid()){ 

 

 return -3; 

} 

int rez = write(mutex 

->pipes[1], "1", 1); 

if (rez != -1) { 

mutex->owner = -1; 

} 

return rez;  

}  

 

 

2.4 Recursive mutex implementation. 

 

The difference from the previous case is that the 

process is allowed to retake a mutex. A mutex locked 

n times has to be released the same number of times. 

So, besides the owner we have to count the locks: 

 
typedef struct { 

int pipes[2]; 

int owner; 

int locks; 

} Mutex; 

 

The creation of a mutex is the same as in the error-

checking mutex. The take and release are slightly 

different: 

 
int take_mutex(Mutex* mutex) { 

char b; 

if (mutex->owner ==  

getpid()){ 

 

 mutex->locks++; 

return mutex->locks; 

} 

int rez = read(mutex 

->pipes[0], &b, 1); 

if (rez != -1) { 

mutex->owner = getpid(); 

mutex->locks = 1; 

} 

return rez; 

} 

 

If the calling process already owns the mutex then all 

it does is locks increment. If not, it enters the race for 

mutex by reading from the pipe. After a successful 

read it marks the mutex as owned and initializes the 

number of locks. 

 

At mutex release, after checking if the calling process 

is the owner of the mutex, the number of locks is 

decremented. The mutex is actually released only 

when the number of locks reaches zero: 

 
int release_mutex(Mutex* mutex) { 

if (mutex->owner !=  

getpid()){ 

 

 return -3; 

} 

mutex->locks--; 

if (mutex->locks > 0) { 

return mutex->locks; 

} 

 

int rez = write(mutex 

->pipes[1], "1", 1); 

if (rez != -1) { 

mutex->owner = -1; 

} 

return rez;  

}  

 

 

2.5 Semaphore implementation. 

 

Semaphores are a small variation of the first mutexes' 

implementation: 

 
typedef struct { 

int pipes[2]; 

} Semaphore; 

 



When a semaphore is created its state is initialized 

with a given value. The initialization is made by 

writing state bytes in semaphore's pipe: 

 
int createSemaphore(Semaphore*  

semaphore, int state) { 

int rez = pipe(semaphore  

->pipes); 

if (rez == -1) { 

return -1; 

} 

while(state > 0) { 

write(semaphore 

->pipes[1], "1", 1); 

state--; 

} 

 return 1; 

} 

 

Operations on semaphores are very simple: post 

consists in writing a byte and wait reading a byte. 

 
int waitSemaphore(Semaphore*  

 semaphore) { 

 char b; 

 int rez = read(semaphore-> 

  pipes[0], &b, 1); 

 return rez; 

} 

 

int postSemaphore(Semaphore*  

 semaphore) { 

 int rez = write(semaphore-> 

  pipes[1], "1", 1); 

 return rez; 

} 

 

 

2.5 Condition variables implementation. 

 

The implementation of condition variables is slightly 

more complicated. Will start with the structure wich 

consists of two pipes, one for blocking and one for 

counting waiting processes: 

 
typedef struct { 

int waitPipe[2]; 

int countPipe[2]; 

} ConditionVariable; 

 

When creating a condition variable in its count pipe 

is wrote a '0' to keep that pipe non empty: 
 

int createCondition( 

ConditionVariable* cond) { 

 

int rez = pipe(cond 

->countPipe); 

if (rez == -1) { 

return -1; 

} 

rez = pipe(cond 

->waitPipe); 

if (rez == -1) { 

return -1; 

} 

rez = write(cond->

 countPipe[1], "0", 1); 

if (rez == -1) { 

return -1; 

} 

return 1; 

} 

 

We wrote a '0' into the count pipe because we assume 

the most unfavorable case that we don't have 

possibility to do an unblocking read from pipe. 

 

The implementation of wait is: 

 
int waitForCondition( 

ConditionVariable* cond, 

Mutex* mutex) { 

 

char b; 

release_mutex(mutex); 

write(cond->countPipe[1],  

 "1", 1); 

read(cond->waitPipe[0],  

&b, 1); 

 take_mutex(mutex); 

 return 1; 

} 

 

After we release the guarding mutex we increase the 

count of waiting processes, writing a '1' in the count 

pipe, and we block reading from wait pipe. After the 

read, which should unblock after receiving a signal 

we retake the mutex before ending the wait call. 

 

When signaling a condition variable we must first 

check if there is at least one process waiting, i.e. at 

least a '1' in the count pipe: 
 

#define BUFF_SIZE 1024 

int signalCondition( 

ConditionVariable cond) { 

 

char buff[BUFF_SIZE]; 

int i; 

int n = read(cond 

->countPipe[0], buff,  

BUFF_SIZE); 

 for (i = 0; i < n; i++) { 

  if (buff[i] == '1') { 

   buff[i] = '0'; 

   write(cond->  

waitPipe[1],  

"1", 1); 

write(cond-> 

countPipe[1], 

&buff[i], n – i); 

   return 1; 

  } 

 } 



write(cond->countPipe[1], 

"0", 1); 

 return 0; 

} 

 

After signaling one waiting process we restore the 

content of count pipe, after a "decrement". In the case 

when we have no waiting process we still write in the 

count pipe a '0' just to keep it nonempty. 

 

The broadcast is simpler, we write a byte in the wait 

pipe for every '1' found in the count pipe, i.e. for 

every waiting process: 
 

int broadcastCondition( 

ConditionVariable cond) { 

 

char buff[BUFF_SIZE]; 

int i; 

int n = read(cond 

->countPipe[0], buff,  

BUFF_SIZE); 

 for (i = 0; i < n; i++) { 

  if (buff[i] == '1') { 

   write(cond->  

waitPipe[1],  

"1", 1); 

  } 

 } 

write(cond 

->countPipe[1], "0", 1); 

 return 0; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After signaling all waiting processes we write a '0' in 

the count pipe. The count pipe must be kept non-

empty because the operation of signaling a variable is 

non-blocking.  

 

 

3. CONCLUSION 

 

The solutions presented are very simple and they 

necessitate only a single, very common, operating 

system mechanism, the pipes. The disadvantage over 

a kernel implementation can come from pipe 

implementation: usually, when a process writes into a 

pipe then all processes blocked when reading are 

waked up. Using named pipes the synchronization 

can be used also by unrelated processes. The events 

can be implemented in a similar mode with condition 

variables. 

 
 

REFERENCES 
 

Bach, M.J. (1986). The Design of the UNIX 

Operating System. Prentice Hall.  

Silberschatz, A., P. Baer Galvin and G. Gagne 

(2002). Operating System Concepts. John Willey 

& Sons. 

Tanenbaum, A.S. (2001). Modern Operating System. 

Prentice Hall.  


