

IMPLEMENTING SYNCHRONIZATION USING PIPES

Ştefan Udriştoiu, Cătălin Cerbulescu and Eugen Ganea

Faculty of Automatics, Computers and Electronics,

University of Craiova

Abstract: This paper describes how mutexes, semaphores and condition can be

implemented in user space using pipes. The implementation is based on pipe's properties

to block reading processes when trying to read from empty pipes and that a byte is red

only once. The main asset of the implementation is its extreme simplicity.

Keywords: operating system, process synchronization.

1. INTRODUCTION

The need for process synchronization is so obvious

that we won't insist on its importance. In this paper,

we describe an implementation in user space of

"classical" synchronization mechanisms: mutexes,

semaphores and condition variables. In this

implementation, the only operating system

mechanism used is pipe.

Usually, synchronization is implemented in user

space with busy waiting or using special hardware

instructions such as TSL (Test and Set Lock).

Disabling interrupts is out of the question, even in the

case when this is possible outside the kernel, because

an incorrect program will freeze the system. Busy

waiting is not recommended because it wastes CPU

time and it can lead to priority inversion. One of the

best implementations using TSL is similar with that

proposed the Tanenbaum(2001) for mutexes,

synchronizing threads in user space:

mutex_lock:

 TSL REGISTER, MUTEX

 CMP REGISTER, #0

 JZE ok

 CALL sched_yield

 JMP mutex_lock

ok:

 RETI

In this solution we have replaced thread_yield, a call

to the thread scheduler implemented in user space,

with a system call to scheduler, sched_yield, which

makes the calling process to give up the CPU.

The above solution is very efficient when the mutex

is not taken because it doesn't need a system call. But

in the opposite case, the processor is released and the

process is put at the end of its corresponding ready

list. If the process that owns the resource has a lower

priority then we have priority inversion problem and

only the scheduler can solve that. Even without

priority inversion this implementation is inefficient.

Consider the case when we have n processes waiting

to lock the same mutex and the critical region of the

process that has the mutex is q quantum "long", i.e.

needs q quantum to execute. At the end of its

quantum, the process that owns the mutex will give

up the processor to the first waiting process, which is

trying to lock the same mutex. The new running

process, after executing a very short code, will decide

to release CPU voluntarily to the next waiting

process, which is not different at all from the

previous one and so is the outcome. After the owning

process releases the CPU we actually have a rapid

succession of n context switches, until the running

process will be again the one that is the only real

ready process and this sequence of context switches

will repeat unnecessarily until the owning process

will exit the critical region.

2. IMPLEMENTATION

In our implementation will make use of pipe

properties:

1. If the pipe is empty, the process trying to

read from will sleep until another process

writes data into the pipe, at which time all

sleeping processes that were waiting for

data wake up and race to read the pipe,

(Bach ,1986).

2. Every byte from pipe will be read only

once.

2.1 How do we recognize a good solution?

A solution to the critical-section problem must satisfy

the following three requirements (Silberschatz et al.,

2002):

1. Mutual Exclusion: When a process is

executing in its critical section, then no

other processes can be executing in their

critical sections.

2. Progress: If no process is executing in its

critical section and some processes wish to

enter in their critical sections, then only

those processes that are not executing in

their remainder section can participate in the

decision on which will enter its critical

section next, and this selection cannot be

postponed indefinitely.

3. Bounded Waiting: There exists a bound on

the number of times that other processes are

allowed to enter their critical sections after a

process has made a request to enter its

critical section and before that request is

granted.

Another requirement is not to make any assumption

about the speed of CPUs.

2.2 Non-recursive and non-error checking mutex

implementation.

We define mutexes as a structure containing both

ends of a pipe:

typedef struct {

int pipes[2];

} Mutex;

To create a mutex we use the following call:
int createMutex(Mutex* mutex) {

int rez = pipe(mutex->pipes);

if (rez == -1) {

return -1;

}

write(mutex->pipes[1], "1",

1);

return 1;

}

Mutex consists in creating a pipe and writing a single

byte in that.

The beginning of critical section is marked with the

take_mutex call:

int take_mutex(Mutex mutex) {

char b;

int rez =

read(mutex.pipes[0], &b, 1);

return rez;

}

The algorithm is very simple: it tries to read a byte

from the pipe. If the pipe is empty, the process

issuing the call blocks until some other process

writes into the pipe. Remember that a newly created

mutex has a byte wrote in its pipe thus the mutex

being not taken. When a process takes a free mutex it

drains the pipe, blocking the following processes

trying to obtain the mutex.

When a process releases a mutex writes a single octet

into mutex's pipe:

int release_mutex(Mutex mutex) {

int rez =

write(mutex.pipes[1], "1",

1);

return rez;

}

If two processes are waiting to take the mutex they

will be waked-up but only one will succeed to take

the mutex because there is only one byte in the pipe.

2.3 Error check mutex implementation.

In this type of mutex, if the same process tries to lock

a mutex which already owns an error is returned. In

the later implementation the process deadlock itself.

The modifications are minimal:

#define EDEADLK -2

typedef struct {

int pipes[2];

int owner;

} Mutex;

Initially, nobody will own the mutex:
int createMutex(Mutex* mutex) {

int rez = pipe(mutex->pipes);

if (rez == -1) {

return -1;

}

write(mutex->pipes[1], "1",

1);

mutex->owner = -1;

return 1;

}

When trying to lock the mutex the process checks if

it already owns the mutex:

int take_mutex(Mutex* mutex) {

char b;

if (mutex->owner ==

getpid()){

return EDEADLK;

}

int rez = read(mutex

->pipes[0], &b, 1);

if (rez != -1) {

mutex->owner = getpid();

}

return rez;

}

After successfully locks the mutex the process marks

itself as the owner of the mutex. If a process inherits

the mutex after it was locked by the parent, the mutex

owner will be marked by the parent id. If the mutex

is inherited before was locked the owner will be –1.

The field is used for the process which wants to lock

the mutex as an indicator for the case in which the

calling process is already the owner. It doesn't matter

if the mutex is free or owned by another process.

When it releases a mutex the process first checks to

see if it is the owner. If true, writes the magic byte

and marks for itself that the mutex its free:

int release_mutex(Mutex* mutex) {

if (mutex->owner !=

getpid()){

 return -3;

}

int rez = write(mutex

->pipes[1], "1", 1);

if (rez != -1) {

mutex->owner = -1;

}

return rez;

}

2.4 Recursive mutex implementation.

The difference from the previous case is that the

process is allowed to retake a mutex. A mutex locked

n times has to be released the same number of times.

So, besides the owner we have to count the locks:

typedef struct {

int pipes[2];

int owner;

int locks;

} Mutex;

The creation of a mutex is the same as in the error-

checking mutex. The take and release are slightly

different:

int take_mutex(Mutex* mutex) {

char b;

if (mutex->owner ==

getpid()){

 mutex->locks++;

return mutex->locks;

}

int rez = read(mutex

->pipes[0], &b, 1);

if (rez != -1) {

mutex->owner = getpid();

mutex->locks = 1;

}

return rez;

}

If the calling process already owns the mutex then all

it does is locks increment. If not, it enters the race for

mutex by reading from the pipe. After a successful

read it marks the mutex as owned and initializes the

number of locks.

At mutex release, after checking if the calling process

is the owner of the mutex, the number of locks is

decremented. The mutex is actually released only

when the number of locks reaches zero:

int release_mutex(Mutex* mutex) {

if (mutex->owner !=

getpid()){

 return -3;

}

mutex->locks--;

if (mutex->locks > 0) {

return mutex->locks;

}

int rez = write(mutex

->pipes[1], "1", 1);

if (rez != -1) {

mutex->owner = -1;

}

return rez;

}

2.5 Semaphore implementation.

Semaphores are a small variation of the first mutexes'

implementation:

typedef struct {

int pipes[2];

} Semaphore;

When a semaphore is created its state is initialized

with a given value. The initialization is made by

writing state bytes in semaphore's pipe:

int createSemaphore(Semaphore*

semaphore, int state) {

int rez = pipe(semaphore

->pipes);

if (rez == -1) {

return -1;

}

while(state > 0) {

write(semaphore

->pipes[1], "1", 1);

state--;

}

 return 1;

}

Operations on semaphores are very simple: post

consists in writing a byte and wait reading a byte.

int waitSemaphore(Semaphore*

 semaphore) {

 char b;

 int rez = read(semaphore->

 pipes[0], &b, 1);

 return rez;

}

int postSemaphore(Semaphore*

 semaphore) {

 int rez = write(semaphore->

 pipes[1], "1", 1);

 return rez;

}

2.5 Condition variables implementation.

The implementation of condition variables is slightly

more complicated. Will start with the structure wich

consists of two pipes, one for blocking and one for

counting waiting processes:

typedef struct {

int waitPipe[2];

int countPipe[2];

} ConditionVariable;

When creating a condition variable in its count pipe

is wrote a '0' to keep that pipe non empty:

int createCondition(

ConditionVariable* cond) {

int rez = pipe(cond

->countPipe);

if (rez == -1) {

return -1;

}

rez = pipe(cond

->waitPipe);

if (rez == -1) {

return -1;

}

rez = write(cond->

 countPipe[1], "0", 1);

if (rez == -1) {

return -1;

}

return 1;

}

We wrote a '0' into the count pipe because we assume

the most unfavorable case that we don't have

possibility to do an unblocking read from pipe.

The implementation of wait is:

int waitForCondition(

ConditionVariable* cond,

Mutex* mutex) {

char b;

release_mutex(mutex);

write(cond->countPipe[1],

 "1", 1);

read(cond->waitPipe[0],

&b, 1);

 take_mutex(mutex);

 return 1;

}

After we release the guarding mutex we increase the

count of waiting processes, writing a '1' in the count

pipe, and we block reading from wait pipe. After the

read, which should unblock after receiving a signal

we retake the mutex before ending the wait call.

When signaling a condition variable we must first

check if there is at least one process waiting, i.e. at

least a '1' in the count pipe:

#define BUFF_SIZE 1024

int signalCondition(

ConditionVariable cond) {

char buff[BUFF_SIZE];

int i;

int n = read(cond

->countPipe[0], buff,

BUFF_SIZE);

 for (i = 0; i < n; i++) {

 if (buff[i] == '1') {

 buff[i] = '0';

 write(cond->

waitPipe[1],

"1", 1);

write(cond->

countPipe[1],

&buff[i], n – i);

 return 1;

 }

 }

write(cond->countPipe[1],

"0", 1);

 return 0;

}

After signaling one waiting process we restore the

content of count pipe, after a "decrement". In the case

when we have no waiting process we still write in the

count pipe a '0' just to keep it nonempty.

The broadcast is simpler, we write a byte in the wait

pipe for every '1' found in the count pipe, i.e. for

every waiting process:

int broadcastCondition(

ConditionVariable cond) {

char buff[BUFF_SIZE];

int i;

int n = read(cond

->countPipe[0], buff,

BUFF_SIZE);

 for (i = 0; i < n; i++) {

 if (buff[i] == '1') {

 write(cond->

waitPipe[1],

"1", 1);

 }

 }

write(cond

->countPipe[1], "0", 1);

 return 0;

}

After signaling all waiting processes we write a '0' in

the count pipe. The count pipe must be kept non-

empty because the operation of signaling a variable is

non-blocking.

3. CONCLUSION

The solutions presented are very simple and they

necessitate only a single, very common, operating

system mechanism, the pipes. The disadvantage over

a kernel implementation can come from pipe

implementation: usually, when a process writes into a

pipe then all processes blocked when reading are

waked up. Using named pipes the synchronization

can be used also by unrelated processes. The events

can be implemented in a similar mode with condition

variables.

REFERENCES

Bach, M.J. (1986). The Design of the UNIX

Operating System. Prentice Hall.

Silberschatz, A., P. Baer Galvin and G. Gagne

(2002). Operating System Concepts. John Willey

& Sons.

Tanenbaum, A.S. (2001). Modern Operating System.

Prentice Hall.

